Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod D. P. Stotler, B. LaBombard¹, J. L. Terry¹, and S. J. Zweben Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543 ¹MIT Plasma Science and Fusion Center Cambridge, MA 02139 Note: This poster is available on the Web at: http://w3.pppl.gov/degas2/ #### INTRODUCTION - Tokamak edge ideal for comprehensive study of turbulence, - Accessible with probes - \Rightarrow directly measure n_e , T_e , and other properties. - Relatively low T_e facilitates use of atomic physics as basis for diagnostics. - Potential payoff great because edge sets boundary conditions for core transport, - * E.g., internal transport barriers, H-mode pedestal. - Gas Puff Imaging (GPI) experiments designed to measure 2-D structure of edge turbulence, - Compare with 3-D nonlinear simulations. - And with turbulence measured by probes, - Puff neutral gas (e.g., D₂) near outer wall, - View with fast, high res. camera light from electron impact excitation of gas, - * Use sightline $\parallel \vec{B}$ to see radial & poloidal structure, - Explore relation between images & plasma fluctuations with DEGAS 2 neutral transport code, - Straightforward because puff does not perturb plasma, - Emitted light brighter than background, - Material surface interactions should not be important. - Experimental presentation: O-02 J. L. Terry et al. Fig. 1 - Zweben APS '01 Fig. 2 - Zweben / APS '01 #### **DESCRIPTION OF DEGAS 2 SIMULATIONS** - Alcator C-Mod Geometry: - Start with outline of vacuum vessel, - * Including gas puff nozzle & surrounding structures. - EFIT equilibrium for time of interest ⇒ - * 2-D plasma mesh set up using DG & Carre, - * Bunch surfaces & grid points to get resolution3 mm or smaller in region of interest. - Divide puff region into ~ 3 mm triangles using Triangle. - Simulations 2-D axisymmetric for now, - Output is averaged over toroidal angle. - \Rightarrow poloidal plane variation of photon emission rates. - Plan to add toroidal resolution ⇒ - * Can directly simulate fast camera views, - * Quantitative comparison of image intensity, - * Evaluate toroidal spatial averaging. #### **DEGAS 2 Geometry for C-Mod Shot 1010622** - Simulations assume steady-state. - Compare time scales: - * Autocorrelation time for turbulence = $10 20 \mu s$, - * Time for 3 eV D to travel across cloud = 1 μ s (2 cm), - * Timescale for emission of D_{α} photon $=1/A_{3\rightarrow2}=0.02~\mu\text{s},$ - * Note that camera exposure times = 2 μ s (60 frame/s) or 4 μ s (5 \times 10⁶ frames / s), - ∗ ⇒ assumption of stationary plasma OK. #### • Physics: − D₂, D₂⁺ dissociation, including * $$e + D_2 \rightarrow e + D(1s) + D(1s)$$ * $e + D_2 \rightarrow e + D(1s) + D^*(n = 3)$ * $e + D_2 \rightarrow 2e + D_2^+$ * $e + D_2 \rightarrow 2e + D(1s) + D^+$ * $e + D_2^+ \rightarrow 2e + 2D^+$ * $e + D_2^+ \rightarrow e + D(1s) + D^+$ * $e + D_2^+ \rightarrow e + D^+ + D^*(n = 3)$ * $e + D_2^+ \rightarrow D(1s) + D^*(n = 3)$ - D + D⁺ elastic scattering (i.e., charge exchange), - $-D_2 + D^+$ elastic scattering, - e + D ionization, - * "Multi-step", i.e., collisional-radiative model. - Neutral-neutral collisions not included, - * May not be negligible, - * Need realistic neutral density to treat, - * Can only be computed in 3-D. – Emission rate ($m^{-3} s^{-1}$) written as: $$S_{\mathrm{D}_{\alpha}} = \sum_{j=\mathrm{D},\mathrm{D}_{2},\mathrm{D}_{2}^{+}} n_{j} f_{j}(n_{e},T_{e}),$$ * Where $n_j =$ ground state atom & molecule density, $$f_D = \frac{n_D(n=3)}{n_D(n=1)} A_{3\to 2},$$ - $* [n_D(n=3)/n_D(n=1)](n_e,T_e)$ from CR model, - st Largely determines n_e , T_e dependence of f_D . $$f_{D_2}, f_{D_2^+} = n_e \sum_{k} \langle \sigma v \rangle_k(T_e),$$ - * k = reactions leading to n = 3. - All puffs are 300 K with cosine distribution, - * Examined sensitivity in preliminary runs, - * Run with $(\cos \theta)^4$ distribution, - * One with 150 K puff. #### • Plasma profiles: - All are taken from measured data mapped to midplane, - Assume constant on a flux surface, - * In triangulated region, estimate $\rho=$ distance between zone center & nearest flux surface mesh zone. - Assume $n_i=n_e$, $T_i=T_e$. #### Scanning Probe Data from C-Mod Shot 1010622006, 700 ms Compare DEGAS 2 Result with Experimental Data Radial Slice at Z = -0.034 m ## Peak Location & Width of Simulated Emission Insensitive to Details of D₂ Distribution ⇒ Vertical extent can be affected #### **C-MOD RESULTS** - Alcator C-Mod shot 1010622006 at 700 ms. - Baseline computed with time-average plasma profiles, - -10-20% of atoms in cloud undergone reflection, - "CX fraction" have had a CX, - Rest from dissociation ⇒ ballistic trajectories. - $\Rightarrow \sim 50 -65\%$ of D emission - At peak, molecular D_{α} s contribute $\sim 40\%$, - < 10% for $R \lesssim 0.9$ m. - Compare with time-average experimental GPI images, - Emission peak near nozzle not seen experimentally, - Probe data assumed constant for R > 0.91 m, - Nozzle peak $\downarrow 10^{-2}$ if $T_e < 2.5$ eV - Or if $n_e < 3.6 \times 10^{16} \text{ m}^{-3}$, - Both consistent with exponential extrapolation of probe data. ## **DEGAS 2 Baseline** ## Fraction of D_{α} Due to Atoms - Impose 2-D perturbation on n_e and T_e , - Important to understand relation between spatial variation in emission & underlying plasma fluctuations, - Consider ad hoc perturbation: $$n'_e(R, Z) = n_e(R, Z) \left[1 + \frac{1}{2} \sin(\frac{\pi Z}{0.01})\right] \times \left\{1 + \frac{1}{2} \sin\left[\frac{\pi (R - R_{\text{sep}} + 0.0035)}{0.005}\right]\right\},$$ - where: - * The 1/2 factors make this a 50% perturbation, - \cdot Factor ranges from 0.25 to 2.25. - * 2 cm wavelength for poloidal ($\sim Z$) variation, - Typical size of observed emission structures. - * Used only 1 cm in R because of limited radial width, - · 0.0035 shift so innermost data point unchanged. - Try same perturbation on T_e , - * Only difference: T_e bound between 5 and 100 eV. ## 2-D Perturbation to Electron Density ### 2-D Perturbation to Electron Temperature # Effect of 2-D Perturbation Normalized to Unperturbed Value Vertical Slice # Effect of 2-D Perturbation Normalized to Unperturbed Value Radial Slice - Both simulations shows same 2-D structure, - → wavenumber spectrum at least similar to that of plasma turbulence, - Expect autocorrelation function & frequency spectra similar also, - Will subsequently investigate quantitatively. - Ratio of perturbed / unperturbed emission $\neq n_e'/n_e$ because $\partial \ln f_{\rm D}/\partial \ln n_e$, $\partial \ln f_{\rm D}/\partial \ln T_e < 1$. - Further complicated by molecular contributions, - $*~f_{ m D_2}$ and $f_{ m D_2^+} \propto n_e$, - * T_e dependence not simple, - * Effective scaling varies radially. - ullet Simple interpretation of GPI: image patterns $\propto n_e'/n_e$, - And insensitive to T_e , - Valid only if $n_e \lesssim 10^{18}~{\rm m}^{-3}$ and $T_e \gg 10$ eV, - Not the case here! - $\Rightarrow n_e$, T_e dependence of $S_{\mathrm{D}_{\alpha}}$ not different enough to infer perturbation amplitudes, - Would be simpler if n_e , T_e in phase. ## $n_e^{}$, $T_e^{}$ Dependence of $D_a^{}$ Emission Rate Contained in Ratio of n=3 Density to n=1 Scaling of $f(n_e, T_e)$ Varies Across Radial Profiles of 1010622 #### **Shadow Fraction** - Above focussed only on effect of perturbation on f_j , - They also impact $n_j!$ - "Shadowing effect": ionization caused by local n_e , T_e peak reduces light at smaller R. - Compare images with and without shadowing, - "With" shadowing is as above, - To eliminate, use perturbed f_i and unperturbed n_i , - "Unshadowed" clearly shows n_e perturbation structure, - Shadowed image smeared out, - * Due to n_i reductions by n_e peaks, - st And n_j increases by n_e minima. ## Runs with Electron Density Perturbation Shadowing: Estimate by computing: $$F_s = \left[\sum_j (n'_j - n_j)f'_j\right] / \sum_j n_j f_j,$$ - Where prime indicates perturbed value. - Evaluate separately for both "perturbed" simulations. - Structure is complicated! - Main observations: - 1. $|F_s| \gtrsim 0.5$ in many places \Rightarrow too large to ignore in GPI analysis. - 2. Most of F_s due to molecules, - Analogous quantity based on atoms only ≤ 0.2 . - \bullet To understand F_s look at radial slices, - -Z = -0.034: peak in n'_e/n_e , - -Z=-0.025: at nozzle & a minimum in n_e^\prime/n_e . - Compare with $1 n_e'/n_e$, - * $1 n'_e/n_e < 0 \Rightarrow$ local $n_e >$ unperturbed value, - * $1 n'_e/n_e > 0 \Rightarrow$ local $n_e <$ unperturbed value, - * T_e perturbation differs at edges. - $-F_s < 0 \Rightarrow n_i$ locally reduced, - * F_s drops are in "shadows" of largest n'_e/n_e . - $-F_s > 0 \Rightarrow n_j$ locally increased, - * $F_s > 0$ at Z = -0.025 since n_e modulation near min., - * Not so in perturbed T_e case due to smaller dissociation rate & strong T_e dependence of f_i . ## Shadow Fraction with Density Perturbation ## Shadow Fraction with Temperature Perturbation #### **Shadow Fraction Significant** #### Radial Slices #### **CONCLUSIONS** - DEGAS 2 simulations show that spatial variation of D_{α} emission reflects that of n_e , T_e turbulence. - ullet But, n_e , T_e dependence of emission rate complicated, - \Rightarrow no simple scheme to get plasma fluctuations. - Contributions from molecules significant, - Further complicating n_e , T_e dependence, - Densities significantly affected by perturbation. - ⇒ will need neutral transport code to interpret GPI, - Must do careful benchmarks first, - To verify these conclusions, - Validate atomic & molecular physics models.